Nature of Transonic Compressor Flow and Its 3D Design Implications
More Info
A key problem in transonic compressor and fan design is that although a 3D description of the flow is necessary to correctly capture the shock, accounting for it during the sectional design is difficult because the key driving design parameters are unknown. In this paper, it is shown that for inlet relative Mach numbers between 0.85 and 1.10, the pre-shock Mach number is a function of the 3D streamtube area at the throat At over the inlet area A1. This key finding is based on three key transonic flow features, discussed in detail within this paper, being present together across a wide range of 10,000 representative transonic compressor and fan designs published online.1 This unique wide-ranging web-interactive dataset reveals that the effect of changes in the blade geometry, or the 3D streamtube height, on the transonic flow field is one of the same and can be explained simply by keeping track of the associated changes in At/A1. Surprisingly, the pre-shock Mach number at a given At/A1 is shown to be insensitive to the details of the blade surface geometry. Only geometric design choices made in the preliminary design phase, such as the maximum thickness and inlet relative flow angle, are shown to have a second-order effect. These findings suggest that the sectional design phase should focus solely on achieving the desired spanwise 3D At/A1 distribution. The second half of the paper addresses the level of fidelity necessary when calculating the spanwise 3D At/A1, for it to positively influence design; especially when approaching a Mach number of unity. A key conclusion is that failing to resolve the subtle 3D radial flow changes within the blade passage at the appropriate level of fidelity during the early throughflow multistage compressor design stage could mislead the transonic design process. As a result, for the rapid exploration of future compressor designs, this paper advocates utilizing the more than 10,000 transonic design databse to generate an initial 3D blade, which is then assessed early in the design process using At/A1 extracted from 3D CFD.
Effects of Tip Clearance on Stall Inception in a Multistage Compressor
More Info
Rotor tip clearance height and the associated tip leakage flow have a significant effect on the performance and stability of compressors. Existing studies considering tip clearance effects on stability have been primarily limited to low-speed compressors, and many of these evaluated single-stage machines, which may not adequately represent stall trends for engine-scale compressors. Furthermore, test campaigns for engine-scale compressors cannot provide instrumentation accessibility required for detailed stage performance and stall investigations. Using results collected from a three-stage intermediate-speed axial compressor with appreciable density rise, this study addresses these needs. In this paper, three rotor tip clearances are tested, ranging from 1.5 to 4% span (1 to 3% chord). Previous studies have primarily shown a transition from short-length-scale spikes to long-length-scale modes as the clearance is increased, whereas the present study shows the opposite: a transition from modes to spikes with increased tip clearance. As a result, these data emphasize that a definitive trend does not exist between the stall inception mechanism and increasing tip clearance. Instead, the clearance effects alter stage matching with speed and change the stall inception mechanism. These results also elicit future research by preliminarily suggesting that stall inception mechanisms may be predictable from steady performance measurements collected in the stalling stage.
The effect of wake induced structures on compressor boundary-layers
More Info
The interaction of a convected wake with a compressor blade boundary layer was investigated. Measurements within a single-stage compressor were made using an endoscopic PIV system, a surface mounted pressure transducer, hotfilms and hotwire traverses, along with CFD simulations. The wake/leading-edge interaction was shown to lead to the formation of a thickened laminar boundary-layer, within which turbulent spots formed close to the leading edge. The thickened boundary-layer became turbulent and propagated down the blade surface, giving rise to pressure perturbations of 7% of the inlet dynamic head in magnitude. The results indicate that wake/leading-edge interactions have a crucial role to play in the performance of compressor blades in the presence of wakes.