An unsteady pressure probe for the measurement of flow unsteadiness in tidal channels
More Info
An unsteady five-hole probe has been developed for the measurement of turbulent flow in tidal channels. Such measurements are vital for accurate prediction of unsteady loads on tidal turbines. Existing field-based velocimeters are either unable to capture the required range of frequencies or are too expensive to profile the variation of turbulence across a typical tidal power site. This work adapts the traditional five-hole wind tunnel probe to achieve a low-cost device with sufficient frequency range for tidal turbine applications. The main issue in the marine environment is that the ambient hydrostatic pressure is much higher than the dynamic pressure. This has been overcome by using novel calibration coefficients and differential transducers. In flume tank tests against laser Doppler velocimeter measurements, the frequency response of the probe has been shown to be sufficient to capture all the frequencies necessary for tidal turbine design.
A Pneumatic Probe for Measuring Spatial Derivatives of Stagnation Pressure
More Info
This paper introduces a pneumatic 9-hole probe which can measure flow angles, stagnation and static pressures, and spatial derivatives of stagnation pressure. It does this through direct measurement at a single location, rather than empirical corrections using measurements at multiple points. The new design resembles a 5-hole probe with 4 additional holes positioned around the side of the probe head. This arrangement enables the probe to distinguish between flows with stagnation pressure gradient and flows at an angle. Mapping between the inputs, the probe hole pressures, and outputs, the calibration reference measurements, is achieved with a trained neural network which takes the place of a conventional calibration map.
The Effect of Isentropic Exponent on Transonic Turbine Performance
More Info
The isentropic exponent is one of the most important properties affecting gas dynamics. Nonetheless, its effect on turbine performance is not well known. This paper discusses a series of experimental and computational studies to determine the effect of isentropic exponent on the flow field within a turbine vane. Experiments are performed using a newly modified transient wind tunnel that enables annular cascade testing with a wide range of working fluids and operating conditions. For the present study, tests are undertaken using air, CO2, R134a, and argon, giving a range of isentropic exponent from 1.08 to 1.67. Measurements include detailed wall static pressures that are compared with computational simulations. Our results show that over the range of isentropic exponents tested here, the loss can vary between 20% and 35%, depending on vane exit Mach number.
Effect of Blade Row Interaction on Rotor Film Cooling
More Info
The mechanisms of blade row interaction affecting rotor film cooling are identified to make recommendations for the design of film cooling in the real, unsteady turbine environment. Present design practice makes the simplifying assumption of steady boundary conditions despite intrinsic unsteadiness due to blade row interaction; we argue that if film cooling responds nonlinearly to unsteadiness, the time-averaged performance will then be in error. Nonlinear behavior is confirmed using experimental measurements of flat-plate cylindrical film cooling holes. Unsteady computations are used to identify the blade row interaction mechanisms in a high-pressure turbine rotor, and a quasi-steady model is used to predict unsteady excursions in momentum flux ratio. It is recommended that the designer should choose a cooling configuration that behaves linearly over the expected excursions in momentum flux ratio as predicted by a quasi-steady hole model.
The Effect of Gapping on Compressor Performance
More Info
In this paper, we study the effect of rotor-stator axial gap on midspan compressor loss using high-fidelity scale-resolving simulations. For this purpose, we mimic the multi-stage environment using a new numerical method that recycles wake unsteadiness from a single blade passage back into the inlet of the computational domain. As a result, a type of repeating-passage simulation is obtained such as observed by an embedded blade-row. We find that freestream turbulence levels rise significantly as the size of the rotor-stator axial gap is reduced. This is because of the effect of axial gap on turbulence production, which becomes amplified at smaller axial gaps and drives increases in dissipation and loss. This effect is found to raise loss by between 5.5% and 9.5% over the range of conditions tested here. This effect significantly outweighs the beneficial effects of wake recovery on loss.
Modelling Turbine Acoustic Impedance
More Info
We quantify the sensitivity of turbine acoustic impedance to aerodynamic design parameters. Impedance boundary conditions are an influential yet uncertain parameter in predicting the thermoacoustic stability of gas turbine combustors. We extend the semi-actuator disk model to cambered blades, using non-linear time-domain computations of turbine vane and stage cascades with acoustic forcing for validation data. Discretising cambered aerofoils into multiple disks improves reflection coefficient predictions, reducing error by up to an order of magnitude compared to a flat plate assumption. A parametric study of turbine stage designs using the analytical model shows acoustic impedance is a weak function of degree of reaction and polytropic efficiency. The design parameter with the strongest influence is flow coefficient, followed by axial velocity ratio and Mach number. We provide the combustion engineer with improved tools to predict impedance boundary conditions.
Accurate Prediction of Loss Using High Fidelity Methods
More Info
Further improvements in aero-engine efficiencies require accurate prediction of flow physics and incurred loss. Currently, the computational requirements for capturing these are not known leading to inconsistent loss predictions even for scale-resolving simulations depending on the chosen convergence criteria. This work investigates two aspects of loss generation using high-fidelity simulation. In the first case study, we look at the effect of resolution on capturing entropy generation rate by simulating a Taylor-Green vortex canonical flow. The second case study focuses on the effect of resolution on flow physics and loss generation and uses a compressor cascade subjected to freestream turbulence. The results show that both resolving local entropy generation rate and capturing the inception and growth of instabilities are critical to accuracy of loss prediction. In particular, the interaction of free-stream turbulence at the leading-edge and development of instabilities in the laminar